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Abstract Kolmogorov complexity furnishes many useful tools for studying different
natural processes that can be expressed using sequences of symbols from a finite al-
phabet (texts), such as genetic texts, literary and music texts, animal communications,
etc. Although Kolmogorov complexity is not algorithmically computable, in a certain
sense it can be estimated by means of data compressors. Here we suggest a method
of analysis of sequences based on ideas of Kolmogorov complexity and mathemati-
cal statistics, and apply this method to biological (ethological) “texts.” A distinction
of the suggested method from other approaches to the analysis of sequential data by
means of Kolmogorov complexity is that it belongs to the framework of mathemati-
cal statistics, more specifically, that of hypothesis testing. This makes it a promising
candidate for being included in the toolbox of standard biological methods of anal-
ysis of different natural texts, from DNA sequences to animal behavioural patterns
(ethological “texts”). Two examples of analysis of ethological texts are considered
in this paper. Theses examples show that the proposed method is a useful tool for
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distinguishing between stereotyped and flexible behaviours, which is important for
behavioural and evolutionary studies.

Keywords Kolmogorov complexity · Hypothesis testing

1 Introduction

Sequences of symbols from a finite alphabet (or “texts”) appear as basic objects of
study in many scientific fields, including molecular biology and genetics (genetic
texts), linguistics (literary and musical texts), zoosemiotics (animal communications),
ethology (behavioural sequences) and others. The main problem that researchers face
in these domains is finding an adequate model which would allow for assessment of
certain characteristics of a text, while using a relatively small number of parameters.
One of the most popular approaches is based on the description of sequences by
stochastic processes. Modeling of DNA sequences by Markov processes of finite
depth, or connectivity, can serve as a good example here. This way of looking at the
problem presents some methodological limitations. Indeed, it is difficult to imagine
that a text by Shakespeare or a frog’s genome could be described adequately by a
stochastic process with a relatively small number of parameters. In order to obtain an
approximately adequate model of a text of a certain type, it is necessary to increase
the number of parameters which, in turn, should be estimated statistically, based on
real data. For example, if the frequency of each letter in a genetic text depends on
n,n > 0 previous letters, then the number of parameters equals 4n. When n = 10, the
numbers of parameters is 220, that is, about one million, and one needs several times
more data to estimate this quantity exactly. Moreover, the finite-memory assumption
(with memory say, 5 or 10) is even less realistic for texts in natural human languages.
As it was noted in [31], if we meet the word “lemma” in a book, we hardly meet the
word “love” in it. (This means that, in fact, the memory of human-written texts is
unlimited.)

One can approach the methodological problems listed above with methods that
are close in spirit to the ideas of Kolmogorov complexity. More precisely, the de-
gree of complexity of a “text” could be estimated by its Kolmogorov complexity.
Although Kolmogorov complexity is not algorithmically computable, it can be, in a
certain sense, estimated by means of data compressors [26, 27]. This approach does
not contradict the probabilistic one, because if one looks at a sequence as generated
by stochastic process, the length of the compressed sequence can be considered an
estimate of the Shannon entropy, which, in turn, equals Kolmogorov complexity. It
is worth noting that a quantitative estimation of complexity of sequences in natural
“texts” is of interest in its own right. There is a huge body of literature that analyses
symbolic sequences by means of Kolmogorov complexity, including diagnostic of the
authorship of literary and musical texts [1, 3, 5, 14, 15, 24, 25, 30]. The importance
of the use of ideas and methods of Kolmogorov complexity in biological sciences can
hardly be overestimated. Such methods were used for estimation of closeness of DNA
sequences [1, 3, 14, 15], construction of phylogenetic trees [3, 5, 14, 15], and distin-
guishing between innate and acquired behaviour in ants [19]. Unfortunately, these
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approaches do not give a possibility to use methods of mathematical statistics and,
in particular, hypothesis testing. This limits the applicability of ideas of Kolmogorov
complexity to biological studies, because, since Fisher’s classic works [6], statistical
testing of biological hypotheses became the main method of quantitative analysis of
biological data.

In this paper we suggest an approach which allows us to combine the advantages
of methods based on Kolmogorov complexity with classic methods of testing statis-
tical hypotheses. As distinct from other approaches to the analysis of sequences by
means of Kolmogorov complexity, we stay within the framework of mathematical
statistics. As examples, we consider ethological “texts” of two kinds, namely, territo-
rial behaviour of gulls and hunting behaviour of ants. In the first case we found that
the complexity of territorial behaviour in gulls differ in two situations: when a tres-
passer approaches a resident’s nest, and when it escapes from a resident’s defended
territory. In the second case we found that complete (successful) hunting stereotypes
in members of a natural ant colony are characterized by smaller complexity than in-
complete hunting stereotypes in naive laboratory-reared ants.

In sum, being applied to members of different branches of Animal Kingdom,
the proposed method appears to be a promising tool to distinguish between “basic”
stereotypical behavioural patterns and flexible behaviour. We believe that this method
is applicable to the analysis of biological texts of different kinds.

2 Description of the Tests

The goal here is to estimate the complexity of sequences of different kinds and to
use these estimates to test hypotheses. This gives the possibility to make decisions
on the basis of standard statistical tests. For example, two sets of sequences could be
DNA of two different species (say, viruses or bacteria), and the problem is to compare
complexities of these sequences. Similar problems arise in many fields of biology and
other sciences.

In order to describe the suggested approach precisely, in the next two subsections
we formally define the notation “complexity” and describe possible hypotheses and
statistical tests.

2.1 General Scheme of the Suggested Method and Its Applicability

First we describe the scheme of the suggested approach. Let there be a sequence
x = x1 . . . xt , t > 0, of letters from a finite alphabet A and let ϕ be a data compressor.
We denote the compressed sequence by ϕ(x), its length by |ϕ(x)| and define the
complexity (per letter) as follows:

Kϕ(x1 . . . xt ) = ∣
∣ϕ(x1 . . . xt )

∣
∣/t. (1)

Generally speaking, we suggest to use Kϕ(x) for hypothesis testing.
It turns out that, under certain conditions, the proposed approach can be used to

evaluate hypotheses about the Kolmogorov complexity of the considered sequences;
see Theorem 1 below (even though it is impossible to calculate Kolmogorov com-
plexity). These conditions are as follows:
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(i) the considered sequences are generated by stationary ergodic sources, and
(ii) the data compressor ϕ is a universal code.

The definition of a stationary ergodic source is given in Appendix 1 as well as the
definitions of universal codes, Kolmogorov complexity, Shannon entropy and some
auxiliary notions. Let us discuss the conditions (i) and (ii) from a practical point of
view. Informally, a universal code can “compress” a sequence x1 . . . xt up to its Shan-
non entropy (per letter) if the sequence is generated by a stationary ergodic source; see
Appendix 1. Moreover, if a universal code ϕ is applied to the sequence x1 . . . xt , the
ratio |ϕ(x1 . . . xt )|/t goes to the Kolmogorov complexity (with probability 1). Hence,
according to (1), the limit of Kϕ(x1 . . . xt ) is equal to the limit Kolmogorov com-
plexity per letter, see Theorem 1. Nowadays there are many efficient universal codes,
which are described in numerous papers, see, for ex., [12, 22, 23]. It is important for
practical applications that the modern data compressors (or archivers) are based on
the universal codes and, hence, the main properties of universal codes are valid for
them (as far as asymptotic properties can be valid for a real computer program). So,
the condition (ii) is not restrictive.

The condition (i) that the considered sequences are generated by stationary ergodic
sources (SES) is potentially too restrictive. For example, if sequences are (digitized)
bird songs, it seems to be natural to apply the model of SES, because the number
of possible songs is very large and they can be created under conditions that remain
unchanged. If the sequences are genetic texts of several species of birds, seemingly,
the applicability of the SES model is not so obvious, because, say, the number of
species (and, hence, corresponding DNA sequences) is limited. And, at last, if some-
one investigates the complexity of Tolstoy’s novels (or Bach’s fugues), the SES model
seems to be even less natural. So, the feasibility of the SES model should be assessed
beforehand by a researcher basing on biological (linguistics, musical, etc.) consider-
ations.

Besides, it is worth noting that stationarity and ergodicity is one of the most gen-
eral assumptions in statistics: it is much more general than, say, the finite-memory as-
sumption commonly used for such problems. Testing this assumption directly is not
possible, since it would require formulating an even more general alternative. Tests
for stationarity exist within specific parametric models, but they are not applicable in
the general setting such as ours.

2.2 The Tests

In this part we describe the suggested approach for testing certain hypotheses about
Kolmogorov complexity of sequences. The main idea of the suggested approach is
very simple and can be formulated as follows: Apply some universal code ϕ to esti-
mate the Kolmogorov complexity of a word x1 . . . xt . Then, use (consistent) statistical
tests to study ϕ(x1 . . . xt )/t (= Kϕ(x1 . . . xt )) in the same manner as one would study
any other natural parameter, such as the weight, the length, the speed, etc. If the as-
sumptions (i) and (ii) hold and if the length of sequences (t) grows, the following
Theorem 1 guarantees that the obtained statistical inference can be interpreted as a
result about Kolmogorov complexity (per letter) of the sequences.
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Theorem 1 Let there be a stationary ergodic source generated letters from a finite
alphabet and a universal code ϕ. Then, with the probability 1

lim
t→∞ t−1

∣
∣ϕ(x1 . . . xt )

∣
∣ = lim

t→∞ t−1K(x1 . . . xt ), (2)

where x1 . . . xt is generated by the source and K(x1 . . . xt ) is the Kolmogorov com-
plexity.

Proof is given in Appendix 2. �

Here we analyse theoretically one example of the use of this approach; numerical
examples will be given in the next section.

First, we briefly describe some notions of mathematical statistics that we use. We
will consider only tests for assessing whether two independent samples of observa-
tions have equally large values, because this example can be easily extended to other
statistical problems. Let there be two sets of samples S1, S2 and the following statis-
tical hypotheses be considered: The null hypothesis H0 is that the elements of both
sets obey the same probability distribution, whereas the alternative hypothesis (H1)
is that elements of the sets S1, S2 obey different distributions F1( ) and F2( ) and one
distribution is stochastically greater than the other, i.e. either for every x F1(x) <

F2(x) or for every x F2(x) < F1(x). (As it is typical of the mathematical statistics
[10], this test does not consider other possibilities.)

There exist several consistent tests for testing H0 against H1 [10, 16].
A test is called consistent if its Type II error goes to 0 when min(|S1|, |S2|) goes

to ∞, while the Type I error is not greater than a required level of significance α,
α ∈ (0,1). Note that the Type I error occurs if the test rejects H0 when it is true and
Type II error occurs if the test accepts H0 when it is not true.

Among the known consistent tests we mention Mann–Whitney–Wilcoxon test (U -
test) [10, 16], which is often used in biological research, and which will be used in
our biological examples later. Informally, the main idea of this test (and many others)
can be described as follows: First, order the joint sample S1 ∪ S2 (say, in ascending
order). Then tag each element of the resulting ordered sample with si if the element
is coming from the sample Si . For example, the resulting sequence of tags may look
like the following

s1s2s1s1s2s1s2s2s2s1s1s2s2s1. (3)

(Here the first symbol s1 means that the smallest element of the two samples belongs
to S1, second largest value belongs to S2, etc.) The hypothesis testing procedure can
be informally described as follows: if the data from two sets are uniformly mixed,
like in (3), the hypothesis H0 is accepted. On the other hand, if the data looks like
two separate subintervals, for example

s1s1s1s1s1s1s1s2s2s2s2s2 or s2s2s2s2s1s1s1s1s1, (4)

then H0 should be rejected. (In a certain sense the examples (4) represent limiting
situations, and they will be used later in the proof.)
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Let us come back to the problem of estimating the complexity of sequences. Now
the sets S1, S2 contain sequences of the length t , t ≥ 1, generated by stationary er-
godic sources. Our goal is to find a statistical test that can distinguish between the
two following hypotheses: H0 = {the sequences from both sets are generated by one
source} and H1 = {the sequences from the different sets are generated by stationary
and ergodic sources with different Kolmogorov complexities (per letter of generated
sequences)}. First of all, let us note that for sequences x1x2 . . . generated by a sta-
tionary ergodic source � there exists a constant k� such that

lim
t→∞ t−1K(x1 . . . xt ) = k� (5)

with probability 1; see [32] and Appendix 1. It is natural to call the constant k�

the per-letter Kolmogorov complexity. (It is worth noting that k� equals the limit
Shannon entropy; see Appendix 1.) So, the definition of H1 is correct, because, with
probability 1, sequences from Si have the same Kolmogorov complexity per letter.

In order to construct the test for H0 against H1 we consider an auxiliary hypoth-
esis H ∗

1 = {the estimation of the average complexity Kϕ() is not equally large for
sequences from different sets S1, S2}. Let T be a consistent test for distinguishing
between H0 and H ∗

1 (say, the Mann–Whitney–Wilcoxon test mentioned above).
The suggested test T

′
ϕ for H0 against H1 (not H ∗

1 !) uses a universal code ϕ and a
consistent test T for assessing whether two independent samples of observations have
equally large values (say, the Mann–Whitney–Wilcoxon test). Let there be two sets
S1, S2 of sequences of the length t , t > 1, which are generated by stationary ergodic
sources. The test T

′
ϕ is as follows: First, calculate Kϕ() for all sequences from S1, S2

and then apply T for testing H0 against H ∗
1 based on the new sets {Kϕ(x), x ∈ S1}

and {Kϕ(x), x ∈ S2}. The following theorem describes properties of T
′
ϕ :

Theorem 2 The Type I error of the test T
′
ϕ is not greater than α and, if min(|S1|, |S2|)

→ ∞ and t → ∞, the probability to accept H0 instead of H1 = {the sequences from
the different sets are generated by stationary and ergodic sources with different Kol-
mogorov complexities (per letter of the generated sequences)} goes to 0.

Proof is given in Appendix 2. �

Comment 1 The suggested approach can be applied in the case where the lengths
of sequences (t) are not constant, but obey a certain probability distribution. It can
be shown that the theorem is true in this case if the distribution of the lengths is the
same for both sets S1, S2 and the average of this distribution goes to infinity when
|Si | → ∞.

Comment 2 Having taken into account Theorem 1, we can see that for any t the
“common” statistical test T is used to test “common” statistical hypotheses H0 and
H ∗

1 , but, if the length of sequences t goes to infinity, T
′
ϕ can be considered the test for

comparison of the Kolmogorov complexity of the sequences, i.e. the test for distin-
guishing between H0 and H1. As we mentioned above, this construction can be used
in many situations when statistical tests are applied. For example, one can investigate
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whether the complexity of a bird song depends on the age of the bird. In this case one
can estimate the complexity by (1) and calculate the correlation coefficient between
Kϕ and the age.

3 Biological Examples: Analysis of Ethological Experimental Data

3.1 Why Study the Complexity of Animal Behavioural Patterns?

One of the main problems in studying animal behaviour at different levels of organ-
isation, from individual to collective behaviour of organisms, is searching for a re-
liable criterion for evaluating the variability and complexity of behavioural patterns.
In evolutionary biology variability is known as an important mechanism of specia-
tion in animals, and differences in behavioural patterns have high diagnostic value
for species identification. Within populations behavioural variability serves as a basis
for behavioural, cognitive and social types of specialization which facilitate tuning
of integrative reactions of the whole animal community to unpredictable influences
of its changing environment (see details in [20]). The concept of complexity of ani-
mal behaviour is still mainly intuitive. First of all, one has to distinguish between the
complexity of flexible and stereotypic behaviour. In the first case we mean levels of
complexity of problems to solve and decisions to make, whereas in the second case
we mean the inner coordination and regularity of species-specific repertoire. Sur-
prisingly, despite many attempts to examine the organizational complexity of signal
repertoires (see, for example, [17, 18]), there are no reliable tools for studying the
complexity of animal behavioural patterns.

The prevalent method of ethological studies is based on the analysis of the so-
called ethograms, that is, recordings of behavioural sequences as alphabets consist-
ing, in average, of 10–15 symbols or letters each, corresponding to a certain be-
havioural unit (an act). For example, hunting attacks in many species, both verte-
brates and invertebrates, are organized as more or less constant sequences of acts,
and can be presented roughly as a recording like this: R (running)–A (approaching)–
J (jumping)–F (fight)–C (capture)–H (handling)–K (killing). Attempts to apply the
probabilistic approach to describe and compare animal behaviours meet methodolog-
ical difficulties, and among them the problem of the large number of parameters men-
tioned above. We suggest that the proposed method of evaluation of complexity of
behaviours based on the concept of Kolmogorov complexity and approaches of math-
ematical statistics is more adequate.

3.2 First Ethological Example: Territorial Behaviour in Gulls

One of the most well-known examples of ethological “texts” is the description of be-
havioural sequences in gulls. In particular, since Tinbergen’s classic works [28, 29],
gulls are well known by their expressive territorial demonstrations towards intrud-
ers that pretend to enter their nesting territories (see, for example, [8]). Using the
so called “resident–intruder” experimental paradigm, we compared territorial be-
haviours in gulls Larus ridibundus displayed in two situations: (1) an intruder is ap-
proaching a nest in which a gull is clutching (i.e. the gull is sitting on the eggs), and
(2) an intruder is moving away from the nest.
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We hypothesised that reactions of a resident towards an approaching intruder are
more variable and “chaotic” than its reactions towards an escaping one, because, as
we could observe in nature, in the first situation a resident hectically tries various
ways to drive a trespasser away, whereas in the second situation it simply repeats
successful combinations of behaviours. We tested this hypothesis by means of the
method described above. Experiments were conducted in 2011, on a lake in South
Siberia (in latitude 53.751◦ North, longitude 77.975◦ East). Larus ridibundus gulls
hatch on nests which float in the lake. During the hatching period, we selected 24 gulls
for the field experiments. In order to provoke defensive behaviour in birds, we used
a taxidermically prepared gull (a “model gull”) as a mock intruder. This model gull,
being distantly operated by an experimenter, moved to the border of the territory of
a resident bird clutching on her nest (i.e. sittings on the eggs), stayed there for 10–15
sec., and then moved away from the territory. A whole session took 60–90 seconds.
All reactions of the resident were video-recorded. In order to compose a “dictionary”
of gulls’ territorial behaviour, we used the following protocol. Typical states of a bird,
in combination with current movements were selected: the position of the bird (such
as sitting on the eggs, flying, floating, etc.), its demonstrative body posture (such as
“upright”, “oblique”, etc.), its position of wings (such as stretching, folding, etc.),
and its vocalization (such as aggressive calls “cah-cah!,” long calls, that is, a series
of notes during which the head is dipped then raised, etc.) (see Appendix 3). From
315 combinations, 60 behavioural units were selected. As a result, we represented
behavioural sequences as “texts,” in which behavioural units (60 in total), singled out
from video records and denoted by symbols (see Appendix 3) served as an alphabet.
Pooling individual ethograms, we obtained 72 behavioural sequences composed of
combinations of 60 units. Then two samples of text files were composed where each
file contained from 2 to 6 sequences of symbols separated by a semicolon. In sum, we
obtained two samples: the first one from 24 files that corresponded to birds’ reactions
towards an intruder approaching the nest (the average file size a file is 177.2 ± 2.9
bytes), and the second one from 10 files that corresponded to birds’ reaction towards
an escaping intruder (an average is 182.8 ± 9.5 bytes). We compressed text files with
the use of the so-called KGB archiver [11] and compared the compression ratio of dif-
ferent behavioural sequences (Table 1). We tested the Hypothesis H0 (the sequences
from two sets are generated by one source) against H1 (the complexity of sequences
from one set is, in average, larger than the complexity of sequences from the other) by
the Mann–Whitney–Wilcoxon test, as described in Sect. 3. It turned out that the files
corresponding to the reactions of resident gulls towards the escaping intruder com-
press better than those corresponding to birds’ reactions towards the approaching and
staying intruder ( U = 1.97; p < 0.05). So, H0 is rejected and we can conclude that,
in average, the complexity of sequences in the first set is larger than in the second.
Thus, these data support our initial suggestion that reactions of a resident gull towards
an approaching trespasser are more variable and “chaotic” than its reactions towards
the escaping one.

3.3 Second Ethological Example: Hunting Behaviour in Ants

We analysed the hunting stereotype of ants Myrmica rubra towards jumping spring-
tails. As this was revealed earlier [21], this stereotype includes determining the vic-
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Table 1 The compression ratios of the resulting files containing reactions of resident gulls toward an
approaching and escaping intruder

Reactions of resident gulls towards Approaching intruder Escaping intruder

size of the file before compression (in bytes) 177.2 ± 2.9 182.8 ± 9.5

size of the file after compression (in bytes) 73.8 ± 2.1 85.9 ± 3.31

compression ratio, % 41.83 ± 1.34 47.71 ± 2.78

tim, approaching it, and then performing the so-called fixed action pattern that we
call “tip-and-run attack:” the ant attacks the prey, bends the abdomen and head to the
thorax, jumps towards the springtail, falls on it abruptly, and stings. Then the ant takes
the victim and transports it to the nest. We compared two groups of highly genetically
variable ants: members of a natural colony (“wild” for brevity) and naive (laboratory–
reared from pupae) ants of age from 3 to 12 days. Ants were housed in transparent
laboratory nests on arenas. The wild colony included about 3000 completely matured
workers, and three naive colonies included 300 workers each. Examined ants were
placed one by one into glass containers with 30 live springtails, and each individual
was tested once. To analyse ethograms from video records, we used the Observer
XT 7.0 (version: 7.0.214, Noldus Information Technology). In total, we analysed 6.5
hours of video recordings by the second, for 26 ants. In order to select behavioural
units, we used the following protocol. For the abdomen, legs, head, antennae and
mandibles, in combination with current movements, typical states were designated
by symbols. With the use of these symbols, we described behavioural units that in-
cluded “blocks” of locomotions and postures. We represented behavioural sequences
as “texts” in which behavioural units (10 in total), singled out from video records and
denoted by symbols (letters), served as an alphabet: W (waiting), S (slow walking),
R (running), T (turning), U (turning around), B (belligerent posture), A (attack), C
(capturing the prey), K (kicking the victim with the sting), T (transporting the prey).

Using the “alphabet” of these 10 units, we expressed the hunting stereotypes as
text files. Every sequence (file) was constructed manually (by the researchers) from
the corresponding video fragment. As the starting point of a hunting stereotype we
took the ant’s approach to the victim and the display of purposive movements; trans-
portation of the killed victim was considered the end of the complete stereotype. All
cases of loss of a victim and switching to another one were considered ends of in-
complete stereotypes. Pooling individual ethograms of members of four groups, we
obtained 4 files which included: 19 complete and 20 incomplete hunting stereotypes
in “wild” ants and, correspondingly, 20 and 31 stereotypes in “naive” ants. We re-
duced these files to equal initial length of 147 units, compressed them with the use
of the same archiver as mentioned in Sect. 3.2 and compared the ratios of compres-
sion in different stereotypes. The length of the complete stereotypes varied from 6 to
22 units (13.42 ± 1.08 on average) in the wild ants and from 5 to 18 in naive ants
(8.75 ± 0.71 on average). The length of the incomplete stereotypes varied from 4 to
14 units (6.55 ± 0.51 on average) in the wild ants and from 3 to 17 in naive ants
(6.03 ± 0.57 on average).

We tested the Hypothesis H0 (the sequences from two sets are generated by one
source) against H1 (the complexity of sequences from one set is, on average, larger
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Table 2 The compression ratios of the resulting files containing complete and incomplete stereotypes

Parameters Wild ants Stereotypes Naive ants Stereotypes

Complete Incomplete Complete Incomplete

size of the file before compression (in bytes) 147 147 147 147

compression ratio, % 63.27 70.07 56.46 68.03

than the complexity of sequences from the other) by the Mann–Whitney–Wilcoxon
test, as described in Sect. 2.1. It turned out that files corresponding to the successful
hunting stereotypes compress better than those corresponding to incomplete hunt-
ing stereotypes both in wild and in naive ants (Table 2). Moreover, H0 is rejected
(with α = 0.05), and we can conclude that, on average, the complexity of sequences
from the first set is larger than in the second. In sum, these data support our ini-
tial suggestion that complete successful hunting stereotypes in ants are less com-
plex.

In general, the use of the suggested method for studying animal behavioural pat-
terns is a promising tool to be used in different areas of behavioural and evolutionary
research. In particular, this method can help to extract “basic” (completely innate)
behavioural patterns by comparing behavioural sequences of different levels of com-
plexity and flexibility. It becomes possible for ethologists to extract innate behavioral
patterns by comparing behavioural sequences of different levels of complexity with-
out resorting to rearing naive animals. Analyzing complexity of behavioural patterns
in naive and experienced animals, we gain an additional possibility to link the ex-
perience with structure and function. This is particularly important for evolutionary
studies including behavioural mechanisms of speciation.

Appendix 1: Universal Codes, Shannon Entropy and Kolmogorov Complexity

First we briefly describe stochastic processes (or sources of information). Consider a
finite alphabet A, and denote by At and A∗ the set of all words of length t over A and
the set of all finite words over A correspondingly (A∗ = ⋃∞

i=1 Ai ).
A process P is called stationary if

P(x1, . . . , xk = a1, . . . , ak) = P(xt+1, . . . , xt+k = a1, . . . , ak)

for all t, k ∈ N and all (a1, . . . , ak) ∈ Ak . A stationary process is called stationary
ergodic if the frequency of occurrence of every word a1, . . . , ak converges (a.s.) to
P(a1, . . . , ak). For more details see [2, 4, 7].

Let τ be a stationary ergodic source generating letters from a finite alphabet A. The
m-order (conditional) Shannon entropy and the limit Shannon entropy are defined as
follows:

hm(τ) = −
∑

v∈Am

τ(v)
∑

a∈A

τ(a|v) log τ(a|v), h∞(τ ) = lim
m→∞hm(τ), (6)
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[2, 7]. The well known Shannon-MacMillan-Breiman theorem states that

lim
t→∞− log τ(x1 . . . xt )/t = h∞(τ ) (7)

with probability 1, see [2, 4, 7].
Now we define codes and Kolmogorov complexity. Let A∞ be the set of all in-

finite words x1x2 . . . over the alphabet A. A data compression method (or code) ϕ

is defined as a set of mappings ϕn such that ϕn : An → {0,1}∗, n = 1,2, . . . and for
each pair of different words x, y ∈ An ϕn(x) 
= ϕn(y). Informally, it means that the
code ϕ can be applied for compression of each message of any length n over the
alphabet A and the message can be decoded if its code is known. It is also required
that each sequence ϕn(u1)ϕn(u2) . . . ϕn(ur), r ≥ 1, of encoded words from the set
An,n ≥ 1, can be uniquely decoded into u1u2 . . . ur . Such codes are called uniquely
decodable. For example, let A = {a, b}, the code ψ1(a) = 0, ψ1(b) = 00, obviously,
is not uniquely decodable. It is well known that if a code ϕ is uniquely decodable
then the lengths of the codewords satisfy the following inequality (Kraft inequality):
�u∈An 2−|ϕn(u)| ≤ 1, see, for ex., [4, 7].

In this paper we will use the so-called prefix Kolmogorov complexity, whose pre-
cise definition can be found in [9, 13]. Its main properties can be described as follows.
There exists a uniquely decodable code κ such that (i) there is an algorithm for de-
coding (i.e. there is a Turing machine, which maps κ(u) to u for every u ∈ A∗) and
(ii) for any uniquely decodable code ψ , whose decoding is algorithmically realizable,
there exists a non-negative constant Cψ that

∣
∣κ(u)

∣
∣ − ∣

∣ψ(u)
∣
∣ < Cψ (8)

for every u ∈ A∗; see Theorem 3.1.1 in [13]. The prefix Kolmogorov complexity
K(u) is defined as the length of κ(u): K(u) = |κ(u)|. The code κ is not unique, but
the second property means that codelengths of two codes κ1 and κ2, for which (i) and
(ii) are true, are equal up to a constant: ||κ1(u)|− |κ2(u)|| < C1,2 for any word u (and
the constant C1,2 does not depend on u, see (8)). So, K(u) is defined up to a constant.
In what follows we call this value “Kolmogorov complexity”.

We can see from (ii) that the code κ is asymptotically (up to a constant) the best
method of data compression, but it turns out that there is no algorithm that can calcu-
late the codeword κ(u) (and even K(u)). That is why the code κ (and Kolmogorov
complexity) cannot be used for practical data compression directly.

The following Claim is by Levin [32, Proposition 5.1]:

Claim For any stationary ergodic source τ

lim
t→∞ t−1K(x1 . . . xt ) = h∞(τ ) (9)

with probability 1.

Comment In [32] this claim is formulated for “common” Kolmogorov complexity,
but it is also valid for the prefix Kolmogorov complexity, because for any word
x1 . . . xt the difference between both complexities equals O(log t), see [13].

Author's personal copy



144 Theory Comput Syst (2013) 52:133–147

Let us describe universal codes, or data compressors. For their description
we recall that (as it is known in Information Theory) sequences x1 . . . xt , gen-
erated by a source p, can be “compressed” till the length − logp(x1 . . . xt ) bits
and, on the other hand, there is no code ψ for which the expected codeword
length (�x1...xt∈At p(x1 . . . xt )|ψ(x1 . . . xt )|) is less than −�x1...xt∈At p(x1 . . . xt )

logp(x1 . . . xt ). The universal codes can reach the lower bound − logp(x1 . . . xt )

asymptotically for any stationary ergodic source p with probability 1. The formal
definition is as follows: A code ϕ is universal if for any stationary ergodic source p

lim
t→∞ t−1(− logp(x1 . . . xt ) − ∣

∣ϕ(x1 . . . xt )
∣
∣
) = 0 (10)

with probability 1. So, informally speaking, universal codes estimate the probability
characteristics of the source p and use them for efficient “compression.”

Appendix 2: Proofs of Theorems

Proof of Theorem 1 For any universal code from the Shannon-McMillan-Breiman
theorem (7) and the definition (10) we obtain the following equation

lim
t→∞ t−1

∣
∣ϕ(x1 . . . xt )

∣
∣ = h∞(x1 . . . xt ), (11)

with probability 1. Having taken into account this equality and (9), we obtain the
statement of the Theorem 1. �

Proof of Theorem 2 For any t the level of significance of the test T equals α, so, by
definition, the Type I error of the test T

′
ϕ equals α, too. In order to prove the second

statement of the theorem we suppose that the hypothesis H1 is true. From (8) we can
see that there exist constants k1 and k2 such that with probability 1

lim
t→∞ t−1K(x1 . . . xt ) = ki, (12)

where x1 . . . xt ∈ Si , i = 1,2, and k1 
= k2. Let us suppose that k1 > k2 and define
	 = k1 − k2. From (1), (12) and Theorem 2 we can see that

lim
t→∞Kϕ(x1 . . . xt ) = ki (13)

with probability 1 (here x1 . . . xt ∈ Si , i = 1,2). By definition, it means that for any
ε > 0 and δ > 0 there exists such t

′
that

P
{∣
∣Kϕ(x1 . . . xt ) − ki

∣
∣ < ε

} ≥ 1 − δ

for x1 . . . xt ∈ Si , i = 1,2, when t > t ′. Hence, if ε = 	/4, then with probability at
least 1−δ all values Kϕ(x1 . . . xt ), x1 . . . xt ∈ S1 are less than all values Kϕ(x1 . . . xt ),
x1 . . . xt ∈ S2. So, with probability at least 1 − δ a set of the ranked values will look
like the right part of (4) and, hence, the hypothesis H1 will be rejected (for large
enough |Si |, i = 1,2). Having taken into account that min(|S1|, |S2|) → ∞ and t →
∞, we can see that the last statement is valid for any δ. The theorem is proved. �
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Appendix 3: Dictionary of Gull’s Behaviours

Symbol Gull’s position Demonstrative postures and actions Position of wings Vocalisation

0 sitting on eggs upright folding aggressive call
1 sitting on eggs upright folding no
2 sitting on eggs oblique folding aggressive call
3 sitting on eggs oblique folding long call
4 sitting on eggs oblique folding no
5 sitting on eggs biting with a beak folding no
6 sitting on eggs snapping with a beak folding no
7 sitting on eggs no folding aggressive call
7 sitting on eggs no folding long call
8 sitting on eggs no folding no
9 standing on a nest upright folding aggressive call
a standing on a nest upright folding no
b standing on a nest oblique stretching aggressive call
c standing on a nest oblique stretching long call
d standing on a nest oblique stretching no
e standing on a nest oblique folding aggressive call
f standing on a nest oblique folding long call
g standing on a nest oblique folding no
h standing on a nest oblique flapping aggressive call
i standing on a nest oblique flapping long call
j standing on a nest oblique flapping no
k standing on a nest biting with a beak stretching no
l standing on a nest biting with a beak folding no
m standing on a nest biting with a beak flapping no
n standing on a nest snapping with a beak stretching no
o standing on a nest snapping with a beak folding no
p standing on a nest snapping with a beak flapping no
q standing on a nest slashing with a wing flapping aggressive call
r standing on a nest slashing with a wing flapping long call
s standing on a nest slashing with a wing flapping no
t standing on a nest no stretching aggressive call
u standing on a nest no stretching no
v standing on a nest no folding aggressive call
w standing on a nest no folding no
x standing on a nest no flapping aggressive call
y standing on a nest no flapping no
z flying no flapping aggressive call
A flying no flapping no
B flying swooping to attack flapping long call
C flying swooping to attack flapping aggressive call
D flying swooping to attack flapping no
E flying biting with a beak flapping no
F flying snapping with a beak flapping no
G sitting on a perch oblique stretching aggressive call
H sitting on a perch oblique stretching long call
I sitting on a perch oblique stretching no
J sitting on a perch oblique folding aggressive call
K sitting on a perch oblique folding long call
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